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The pressure field due to a large circular capped air bubble rising in water has 
been determined experimentally. The results verify the Davies & Taylor cap 
boundary condition and the frontal pressure field is well approximated by that 
due to irrotational flow around an oval body. 

The pressure field extends axially as far as ten bubble half-widths below the 
bubble floor. Immediately below the floor the pressure is constant for about 
two-thirds of a bubble height. The wake is closed and contains symmetric 
pressure minima. For the bubbles studied, turbulence, as well as the diffusion of 
vorticity, probably controls the momentum distribution and energy dissipation 
in the wake. 

1. Introduction 
Past investigations of spherical and circular capped bubbles have dealt 

primarily with determining the bubble’s shape and rate of rise. As a result of this 
research, a number of methods are available for accurately predicting the rise 
velocity of a spherical or circular capped bubble (Collins 1 9 6 5 ~ ;  Davies & Taylor 
1950; Haberman & Morton 1953; Maneri & Mendelson 1968; Mendelson 1967; 
Rosenberg 1950). The bubble shape in terms of its angular half-width or height- 
to-width ratio can also be determined (Collins 19653; Davies & Taylor 1950; 
Grace & Harrison 1967). Recently, a more fundamental understanding of the 
fluid motion surrounding the bubble has become of interest and has led to flow 
visualization studies of the bubble’s wake structure (Collins 1965~;  Crabtree & 
Bridgwater 1967; Maxworthy 1967). These studies have been instrumental in 
yielding qualitative information about the flow field by indicating possible 
areas or zones where the fluid motion may be treated as irrotational and 
where more complicated effects such as turbulence and viscous shear may be 
important. 

In  this paper detailed measurements of the entire pressure field around a 
circular capped air bubble are presented. The measurements are used to verify 
the Davies & Taylor boundary condition and to develop a realistic analytical 
model for the region of flow in front of a two-dimensional bubble rising at its 

t Present address : Knolls Atomic Power Laboratory, General Electric Company, 
Schenectady, New York. 
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FIGURE 1. Schematic diagram of the experimental apparatus. 

terminal velocity. The validity of the model is evaluated by comparison with 
selected pressure-field data. The pressure measurements also give information 
regarding the boundary and character of the bubble wake. 

2. Description of the experiment 
A single bubble is injected into a ‘two-dimensional’ water column, 36 in. wide, 

69in. high and $in. thick, through a specially designed bubble injection 
mechanism. As the bubble rises, motion pictures and pressure measurements are 
taken simultaneously. A schematic diagram of the apparatus employed is shown 
in figure 1. 

The water column was constructed from parallel plates spaced Q in. apart and 
both column walls were reinforced laterally to limit the maximum hydrostatic 
deflexion to 0.008 in. The bubble injection mechanism used was conceptually 
similar to that employed by Walters & Davidson (1961) and consisted of a 
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movable brass tube mounted in the rear wall of the column. The tube was filled 
with air and rapidly retracted to release a nearly circular bubble. 

The pressure field resulting from the passage of the bubble through the water 
was measured by DISA51F32 pressure transducers flush mounted in the rear 
wall of the column and recorded on a 906C Visicorder. Motion pictures of the 
bubble’s rise were taken at  a nominal speed of 200 frames/s with a 16 mm Hycam 
camera. Synchronization of the bubble’s position with the recorded pressure- 
time traces was accomplished by including a high-speed clock in the camera’s 
field of view and recording the instant at  which the clock started. 

A cam timer sequenced events of an experimental run automatically. Details 
of the equipment are given in Lazarek (1972). 

3. Experimental data 

bubble sizes ( I &  and 2in. initial diameter) and several t,ransducer locations. 
Simultaneous pressure-field and photographic data were obtained for two 

Bubble size, shape and rise velocity 

Average values of the bubble width, height, aspect ratio, frontal radius and rise 
velocity computed from the motion pictures are presented in table 1. Also 
included in the table are standard deviations for the averaged bubble parameters. 
As seen there, the bubble’s size, shape and rise velocity are extremelyreproducible 
for both bubble diameters used in the experiment. The data for the rise velocity 
and aspect ratio are in good agreement with similar results in the literature 
(Collins 19653, c; Pyle 1965; Maneri 1970). Details of this comparison are given 
in Lazarek (1972). 

Pressure-time traces 

The pressure-time traces for each experimental run were synchronized with the 
motion pictures and reduced to dimensionless form. The dimensionless variables 
consist of the pressure coefficient, a normalized time and a normalized lateral 
displacement. 

The pressure coefficient C, is defined as 

where pm is the static elevation head above a transducer at  a given location, p is 
the pressure measured at  that transducer location, U is the bubble rise velocity 
and p is the liquid density. 

The normalized time Ut/a  represents the distance travelled by the bubble in 
terms of the number of bubble half-widths. Ut/a  is defined as zero when the 
bubble nose is at  the same vertical height in the column as the transducer. With 
this definition Ut/a  is negative when the transducer is located above the bubble 
nose and vice versa (see figure 2 ) .  

The normalized lateral displacement y/u represents the horizontal distance 
between the bubble’s axis of symmetry (y = 0 )  and the vertical centre-line of the 
tranducer. 
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Transducer location I' 
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Transducer location relative 

Initial bubble 
diameter = 2 in. 

Initial bubble 
diameter = lgin. 

Average 
value Standard 

Parameter (61 runs) deviation 
Bubble width, 2a (in.) 4.62 0.0578 

Aspect ratio, hfa 0.46 04134 
Frontal radius of curvature, 3.55 0.0653 

Rise velocity, U (in./s.) 20.70 0.354 

Bubble height, h (in.) 1.05 0.0228 

Rt (in.) 

t Measured over 75" included angle. 

Average 
value Standard 

(49 runs) deviation 

3-45 0.0518 
0.76 0.0163 
0.44 0.01 15 
2.82 0.0779 

18-36 0.344 

TABLE 1. Data for bubble size, shape and rise velocity 

Bubble at time position, Ut/a=O + h/n - 045 (4 

I aks .-. .,, , 
ce 

Measured pressure m m i e  ore 
free surfal Measured pressure 

coefficient at time' 

I 

Frontal pressure field -3 Pressure field behind bubble 

FIGURE 2. Bubble position relative to dimensionless pressure-time plots. 

The location of the bubble relative to the transducer and the pressure measured 
by the transducer illustrate graphically the synchronization of the pressure-time 
curve (figure 2b) and the motion picture (figure 2a). Selected plots of C, us. Ut/a 
for various values of y/a are presented in figures 3-5 for the 2 in. bubbles used in 
the experiment. Additional data for the l+in. diameter bubbles given in Lazarek 
(1972) show similar trends. 
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FIGURE 4. Axial pressure distribution along y /a  - 0.85 for bubbles of initial diameter 2 in. 

0 0 a V 0 
Run 300-01 300-07 300-08 300-10 300-12 
Y b  0.97 0.75 0.86 0.82 0.90 



678 G. M .  Laxarek and H .  Littman 
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FIGURE 5. Axial pressure distribution along y / a  - - 1.80 for bubbles of initial diameter 2 in. 

0 0 a v 0 X + 
Run 300-25 300-26 300-28 300-29 300-31 300-34 300-36 
Y l a  -1.86 - 1.82 - 1.84 -1 .70  -1.93 -1.83 - 1.72 

4. Analysis and discussion of the data 
The dimensionless pressure-field plots are divided into three regions for 

purposes of discussion and analysis. These regions consist of ( a )  the frontal 
pressure field, (b)  the pressure field between the bubble cap and floor and (c) the 
pressure field behind the bubble. 

The frontal pressureJield 

In  the region ahead of the bubble cap, the pressure-coefficient data are extremely 
reproducible and can be predicted from the two-dimensional model shown in 
figure 6 .  This model approximates the actual flow in front of a circular capped 
bubble by irrotational flow around an oval body. The front part of the oval 
corresponds to the bubble cap while the remaining portion of the oval provides 
a first approximation to the streamlines that leave the bubble rim and form the 
boundaries of the bubble wake. 

The oval is constructed mathematically by combining the complex potentials 
for a source and sink of equal strength with that of SL uniform stream. Effects 
due to the finite distance between the bounding walls are accounted for by an 
infinite reflexion of the source and sink according to the method of images. 

There are two constants in the analytical model, which arise from the initially 
unspecified source-sink strength and from the source-sink spacing. A relation 
between the two constants is determined in the analysis by requiring the oval to 
pass through the bubble rim and the front stagnation point. This procedure 
ensures that the oval has a frontal geometry close to the circular cap shape 
observed experimentally. The remaining constant, the ratio of the source-sink 
spacing to the length of the oval, is bounded between zero and unity by physical 
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FIGURE 6. Analytical model for the frontal flow field. 

considerations. By varying its magnitude, a variety of wake boundary modelling 
assumptions may be investigated. This feature of the model is important since 
the actual boundary of the wake is not known a priori, and a reasonable approxi- 
mation to the true wake can be determined semi-empirically by comparing the 
model’s predictions with data for the frontal pressure field. 

The expression for the complex potential in dimensionless form is 

W ( z )  - z 
Ua a np sinh I- IK~E In [ sinh +n,u(z/a + EK) 

2 sinh [+mp( 1 +s)] sinh [ifm,u( 1 - E)] sinh +n,u(z/a - EK)] , (4. 1) -- 

where e = l/b, p = h/a, K = b/a. 

The relationship between E and K is obtained from the above-mentioned 
‘fitting’ procedure by computing from (4.1) the oval streamline which passes 
through the points (b,iO) and (b-h,ia). This technique yields the following 
transcendental relation: 

P(K, E) = cosh [ T ~ ( K  - v)] - cos (np) cosh ( T ~ E K )  

= 0, (4.2) 
(np) sinh (~;uEK)  

2 sinh [&w,u( 1 + E)] sinh [&JK~( 1 - E)] 
-sin ( rp)  sinh ( T ~ E K )  cot 

where Y = h/a. 

In the remainder of the analysis, K is considered fixed by (4.2) and E is regarded 
as a parameter. The solution of (4.2) for values of E between zero and unity has 
been obtained by Lazarek (1972) for the conditions used in the experiment. 
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The dynamic pressure coefficient, obtained in the usual way, is 

where 
sinh [ * n ~ p (  1 + e ) ]  sinh [ & n ~ p (  1 - e)]  

sinh n ~ p e  G(K, P, 4 = , (4.4a) 

X’lU = X / U  - K, (4.4b) 

sinh np[x’/a + K( 1 - s ) ]  
= cosh np[x’/a + K (  I - s)] - cos (npyla) 

sinh n,u[x’/u + K( 1 + s)] 
cash n,u[x‘/u + K( 1 +e)] - cos (npyla) ’ - (4.4c) 

(4.4d) 

Figures 7 (a)-(d) present a comparison between the analytical model and 
selected data for the frontal pressure field. The value 0.60 used for e in the 
comparison was determined by superimposing theoretical results for different 
values of e upon data plots similar to those presented in the figures. The super- 
position showed that reasonable agreement could be achieved for values of F 

between 0.50 and 0.80. The value 0.60 was judged to give the ‘best fit ’ to the 
data on an overall basis. 

These figures show that there is a good measure of agreement between the 
theoretical model and the experimental data. The theory correctly predicts all 
the trends shown by the data: (i) a monotonically decreasing pressure coefficient 
along the vertical axis of symmetry above the stagnation point (figure 7 a ) ;  
(ii) the appearance of a pressure peak in front of the bubble a t  intermediate 
lateral displacements off the axis of symmetry (figure 7 b )  and (iii) a monotonic 
increase in pressure at large lateral displacements (figure 7 d) .  

Quantitative agreement between the theory and the data is good. The 
difference between the predicted and the measured pressure coefficients is of the 
order of O-05-0.10Cp except at a lateral displacement of yla = 2.35 (figure 7c), 
where x’la is between - 0.45 and 0. In  this region the theory differs from the data 
by about 0.15C,. Although better agreement can be obtained there (figure 7 c )  
by using E = 0.80 (Lazarek 1972) it  is important to recognize that e can only have 
one value within the constraints of the analytical model. 

Several oval shapes were computed as a function of e and compared with a 
photograph of the wake given by Collins ( 1 9 6 5 ~ ) .  As shown in figure 8, the oval 
shape with e = 0.5 closely approximates the wake boundary observed by Collins 
and this value of s is in reasonable agreement with the value 0.6 required to fit the 
data for the frontal pressure field. 

- sin (nPY/a) 
cash n,u[x’/a + K( 1 + e)]  - cos (npyla) * 
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FIGURE 7. Comparison between the theoretical model and data for the frontal pressure 
field at a lateral displacement of (a )  y/u N 0, ( b )  y/u N 1.00, (c) y/u N 2.35, ( d )  y / a  N 84'5. 
Bubble data: 0 ,  initial diameter 2 in.; 0, initial diameter 14 in. The curves marked 2 in. 
and 14 in. are equation (4.3) with E = 0.60 for bubbles of initial diameter 2 in. and 1Q in. 
respectively. 

The pressure jield between the bubble cup and the floor 

In  this region the pressure coefficient decreases linearly with increasing distance 
below the bubble nose (figures 3 and 4). As expected, the pressure within the 
region is quite uniform at a given instant of time. The theoretical expression for 
the pressure coefficient along the bubble cap is easily derived by the method of 
Davies & Taylor (1950): cp = 1 - 3gx/u2, (4.5) 

where x is the vertical distance beneath the bubble nose. 
Figure 9 compares the measured pressure coefficients with that predicted by 

(4.5). The theoretical cap pressure distribution agrees well with the experimental 
data for both bubble sizes used in the experiment. Admittedly, the data exhibit 
some scatter because of large axial pressure gradients that make measurements 
difficult in the vicinity of the bubble cap. However, the data are reproducible and 
show good quantitative agreement with the theory. These results experimentally 
verify the Davies & Taylor (1950) cap boundary condition. 
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FIGURE 8. Shape of oval as a function of B .  Y = 0.45, a = 1.736 in., c = 18.0 in 

The pressure Jield behind the bubble 

The data describing the third portion of the pressure field indicate that the axial 
pressure field extends as far as ten bubble half-widths below the bubble floor. 
Laterally, the dynamic pressure extends across approximately the full width of 
the water column, or about ten bubble half-widths from the bubble's vertical 
axis of symmetry for the l i i n .  bubbles. 

Different trends, dependent upon the lateral and axial displacements y/a and 
litla, are observable from the pressure-coefficient data beneath the bubble. The 
pressure directly beneath the bubble is constant for about two-thirds of a bubble 
height. This is illustrated in figures 3 and 4 by the linear portion of the pressure- 
time curve between the bubble floor (Utla - 0.55) and Ut/a - 0-75. At 
Ut/a N 0-75, the pressure coefficient reaches a minimum of about - 1-50. The 
data show that the linearity in the pressure-time curve extends laterally about 
1.2 bubble half-widths on either side of the bubble's axis of symmetry. The 
behaviour of the pressure-time data in this region is probably due to a turbulent 
region of liquid that travels with the bubble. 
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FIGURE 9. Theoretical and experimental pressure distributions along the bubble cap. 

For lateral displacements less than 1.20a, the linear decrease in pressure 
below the bubble floor is followed by a sharp rise in pressure which is complete at 
a distance of about one bubble half-width (Ut/a N 1.0). From this point, a gradual 
decrease in the pressure coefficient occurs up to a distance of three bubble half- 
widths (Ut/a - 3.0). Then pressure recovery takes place up to Ut/a - 7. A slight 
‘overshoot ’ in pressure is observed a t  the end of the recovery region for lateral 
displacements less than one bubble half-width and the pressure coefficient 
remains positive from there on for a distance of about four bubble half-widths. 
The magnitude of the ‘overshoot ’ varies somewhat with lateral displacement, 
having a pressure coefficient of about 0.10 near y/a = 0 and 0.0 near y/a = 1. 
After the ‘overshoot’ is complete, the pressure coefficient becomes flat with a 
magnitude near zero and remains so until the bubble breaks the free surface 
(Ut/a N 12). After this, the measured pressure coefficients oscillate slightly about 
a mean value corresponding to the change in water level caused by the lost bubble 
volume. The oscillatory pressure is associated with the settling motion of the free 
surface. 

An additional investigation was performed to determine whether the overshoot 
was characteristic of the bubble wake or whether it was caused by bubble inter- 
action with the free surface. Several runs were performedusing bubbles of initial 
diameter 2 in. with a 40% reduction in the water level above the pressure trans- 
ducers. Selected results of the study are presented in Lazarek (1973) and show 
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FIGURE 10. Isobaric representation of the pressure field for 
a bubble of initial diameter 2 in. 

that the ‘overshoot’ characteristic of the pressure field beneath the bubble is due 
to the bubble wake and not to interactions between the bubble and the free 
surface. 

The pressure-field data beneath the bubble may be interpreted with respect 
to the visual wake studies of Collins (1965~) and also Crabtree & Bridgwater 
(1967). For this purpose, an isobaric representation of the pressure field was 
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constructed for a bubble of initial diameter 2 in. by cross-plotting the dimension- 
less pressure-time traces. Figure 10 presents the resultant isobaric plot, where 
lines of constant pressure coefficient are shown relative to a stationary bubble. 
Portions of the isobars where some uncertainty exists, owing to either a scarcity 
of data or scatter in the data, are shown by dashed lines. 

The wake boundary observed by Collins for a circular capped bubble at a 
Reynolds number similar to that used in the present study ( N 2 x lo4) is also 
shown in figure 10. Collins found a closed wake structure consisting of a trailing 
vortex pair inside an elliptical or oval boundary. A ‘smoother’ type of flow 
characterized by more gradual streamlines was observed to exist outside that 
region. Three characteristics of the pressure-field data support the contention 
that a wake structure similar to that observed by Collins was also encountered in 
the present experiments. 

(i) Symmetry of the pressure field about the bubble’s vertical axis. 
(ii) The scatter in the pressure-field data is largest in a region extending 1.5 

bubble half-widths from the axis of symmetry and downward for about 4 bubble 
half-widths beneath the bubble nose (see figure 10). Outside this region, which 
corresponds approximately to Collins’ wake, the scatter in the pressure-field 
data decreases rapidly in the lateral direction, indicating transition there to a 
well-ordered flow field. 

(iii) Pressure minima are observed at  yla = ~f: 0-75, Utla = 2.5, and are inside 
Collins’ wake boundary and close to his vortex centres. 

Further evidence for an elliptical or oval wake is provided by the analysis of the 
frontal pressure field, which indicates that the frontal pressure field is strongly 
influenced by the boundaries of the wake. Good agreement between the theo- 
retical analysis and the pressure-distribution data was obtained when the wake 
boundary was allowed to take on an oval form. Relatively poor agreement with 
the data occurs when the wake boundary either degenerates to that of a cylinder 
or has an extremely large axial length, somewhat typical of the infinite wake 
models used in past analyses of rise velocity (Collins 1967; Rippin & Davidson 
1967). 

Our experimental pressure-field results do not agree with the wake studies of 
Crabtree & Bridgwater. They found the bubble wake to be characterized by an 
alternate vortex shedding process at  Reynolds numbers similar to those en- 
countered in this investigation. If alternate vortex shedding had occurred in the 
present study, vortices would be staggered behind the bubble and travel upwards 
at a velocity less than the bubble rise velocity. Depending upon the translational 
velocity of the vortex centres, a variety of pressure distributions could be 
measured a t  a fixed point in space. All, however, would exhibit a large asym- 
metry in the lateral direction owing to staggering of the vortices, Such a trend is 
not indicated by the pressure-field data. 

Further indication that the wake was of a non-shedding type is provided by the 
high-speed motion pictures taken for each experimental run. These data show 
that the circular capped bubbles used in the experiment rose on rectilinear paths 
with little or no lateral motion. If vortex shedding had occurred, the bubbles 
would not have risen rectilinearly. Instead a rocking type of motion would have 
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been observed each time a vortex was discharged from the bubble rim (Lindt 
1971). It is likely that the form of the wake observed by Crabtree & Bridgwater 
was related to their dump cup method of producing the bubble. 

The Reynolds numbers that characterize the bubble rise are reasonably high, 
so that turbulence, as well as the diffusion of vorticity, probably controls the 
momentum distribution and energy dissipation in the wake. Additional research 
is necessary to understand these effects and to develop a quantitative description 
of the wake. 

The authors are grateful to the Atomic Energy Commission for partial support 
of this work under Grant AT(30-1)-3639. 
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